Master in Data Science and Analytics (MSDSA) (formerly Master of Science in Applied Statistics and Analytics)

Information Session for Spring 2024 Admission

Dr. Joe DeMaio, Director of the Masters in Data Science and Analytics Program, will hold an online information session on Wednesday, September 27th at 5:30pm EST. The session will be conducted via Microsoft Teams - click here to join. 

The Master of Science in Data Science and Analytics (MSDSA) program at Kennesaw State University (KSU) is a professional degree program which prepares a diverse student body to utilize cutting edge data science and analytics techniques for careers in business, industry, government, and health care. Students graduate with the essential knowledge, techniques, and tools gained from working with faculty who integrate real-world data into their courses and multiple opportunities to work directly with corporate partners.

Apply Now »


About MSDSA Program

The MSDSA program is a 36 semester-hour graduate program designed to help students gain the skills, knowledge, and experiences they need to be practicing data scientists and analytics professionals. Our students come from wide variety of academic and professional backgrounds, but by the time they graduate all are prepared for a career in data science and analytics. Highlights of the program include:

  1. Fluency in analytical programming languages such as R, Python, and SAS, all necessary for the workforce.
  2. Statistical and mathematical foundations emphasized throughout the program as essential to understanding model building.
  3. Working directly with companies every semester in sponsored project courses is possible. Previous sponsors include Equifax, Travelers, Southern Company, IHG, Shaw Flooring, Truist Bank, Spanx, Atlanticus, and Coke One North America. 
  4. Capstone options include internships, applied research projects, research with faculty, working in a Center for Data Science and Analytics sponsored lab, and others. 
  5. Emphasis on communication of results and professional presentation skills, which is vital and helps our graduates stand out in job searches.
  6. Analytics Day each fall and spring brings actively recruiting employers and industry professionals directly to the students in our programs who get to showcase their skills through poster presentations. 
  7. Students can take up to 9 hours of related courses in other programs at KSU to help expand their knowledge and skills into related areas like Information Technology, Computer Science, Software Engineering, Business, Health, Social Sciences, and Education.

Curriculum - Program Requirements

Required Courses (12 Credit Hours)

Select one from the following (3 Credit Hours)

  • STAT 7125 - Design and Analysis of Human Studies
  • STAT 7220 - Applied Experimental Design

Select at least two from the following (6 Credit Hours)

  • STAT 7125 - Design and Analysis of Human Studies (if not selected above)
  • STAT 7220 - Applied Experimental Design (if not selected above)
  • STAT 7225 - Applied Longitudinal Data Analysis
  • STAT 7240 - Applied Data Mining or STAT 8240 Data Mining I (credit will not be awarded for both
  • STAT 7310 - Applied Categorical Data Analysis
  • STAT 8220 - Time Series Forecasting
  • STAT 8320 - Applied Multivariate Data Analysis
  • STAT 8330 - Applied Binary Classification

Required Project (6 to 9 Credit Hours)

Minimum of 6 credit hours are required. Students can take any of the courses here multiple times for credits. But maximally 9 credit hours can be applied for the degree. A written report (a project proposal, a project status update, or a final project report) is required by the end of each semester when any amount of the credits are taken.

Electives (6 to 9 Credit Hours)

Any other 7XXX or 8XXX courses with a DATA or STAT prefix may be used to complete the degree requirements. Courses from other graduate programs (IT, CS, SWE, IS) may be used with approval of the graduate program coordinator.

Note: Up to nine hours may be substituted with the permission of the Program Coordinator.

Program Total (36 Credit Hours) 


MSDSA - Course Forecast

Fall Semester
Spring Semester
  • 7020 (Base SAS) — Required MSAS
  • 7100 (Methods) — Required MSAS
  • 7130 (R)
  • 7240/8240 (Data Mining)
  • 7010 (Math Stat) — Required MSAS
  • 7110 (Quality Control) — even years
  • 7225 (Longitudinal) — even years
  • 7310 (Categorical) — odd years
  • 7120 (Advanced SAS)
  • 7220 (Design) — Required MSAS
  • 7210 (Regression) — Required MSAS
  • 8250 (Data Mining II)
  • 8330 (Binary Classification)
  • 7140 (Six Sigma) — odd years
  • 8320 (Multivariate) — odd years
  • 8220 (Time Series) — even years

Required courses offered every Fall Semester:
Required courses offered every Spring Semester:
  • STAT 7010
  • STAT 7020
  • STAT 7100
  • STAT 7220
  • STAT 7210

Electives courses offered every Fall Semester:
Electives courses offered every Spring Semester:
  • STAT 7130
  • STAT 7240/8240
  • STAT 7120
  • STAT 8250
  • STAT 8330

STAT 7940 (Applied Analysis Project), STAT 7916 (Co-op) and STAT 7918 (Internship) are offered every term.

STAT 7125 (Human Studies) will be offered according to the lab request.

In general, the following electives will be offered at least as often as indicated below:

  • STAT 7110 (Quality Control) – Fall of even numbered years
  • STAT 7140 (Six Sigma) – Spring of odd numbered years
  • STAT 8220 (Time Series) – Spring of even numbered years
  • STAT 7225 (Longitudinal) – Fall of even numbered years
  • STAT 7310 (Categorical) – Fall of odd numbered years
  • STAT 8320 (Multivariate) – Spring of odd numbered years


  • With agreement of the Program Director, graduate courses in other KSU departments can be substituted for up to 9 hours in the above program to complete the required 36 credit hours.
  • In addition, some of the courses intended for the Ph.D. in Data Science and Analytics program (which are not shown here) can be taken as electives by students in the MSDSA program. These courses will typically be taught during the day and not at the traditional MSDSA evening time.

Course Titles: 

  • Introduction to Mathematics for Statistics
  • Mathematical Statistics
  • Statistical Computing and Simulation
  • Statistical Methods
  • Advanced Programming in SAS
  • Quality Control and Process Improvement
  • Applied Experimental Design
  • Design and Analysis of Human Studies
  • Six Sigma Problem Solving
  • Applied Regression Analysis
  • Time Series Analysis
  • Applied Longitudinal Data Analysis
  • Data Mining
  • Applied Categorical Data Analysis
  • Applied Multivariate Methods
  • Applied Topics in Binary Classification
  • Applied Analysis Project

Find out more information about the admission requirements on the Graduate College's website.


Area of Interest

Categorical Data Analysis | Data Mining | Measurement System Analysis 
 Modeling Data | Performance Improvement Measures | Quality Control
Six Sigma | Statistical Computing | Statistical Methods 


Categorical Data Analysis - Categorical data analysis is an important tool in many areas, particularly biological and health sciences. This type of analysis is focused on outcomes that either cannot or should not be studied using a continuous model. The most common type of categorical analysis is with a binary yes/no outcome such as presence or absence of disease or success or failure of a process. Since this type of outcome is so common, we will spend a large proportion of the course working with this sort of data. We will learn to analyze binary outcomes like this in detail using univariate techniques and logistic regression. In particular, we will focus on interpreting and reporting binary outcomes and their predictors in a fashion that makes our results understandable to the end user. In addition, we will work with techniques for modeling multi-level outcomes and survival data, which are also common in today's world. We will discuss how to make decisions about using various categorical models for both predictors and outcomes. At the end of the course, the students should be able to conduct and report a complete analysis of several types of categorical outcomes.

Data Mining - The almost ubiquitous presence of electronic data capture through the internet, e-commerce, electronic banking, point-of-sale devices, bar-code readers, and the like has created a very data-rich, but information poor decision making environment. Data mining is a rapidly growing field where the application of statistical tools and artificial intelligence enables the conversion of data into information to dramatically improve decision making. Successful applications of data mining include areas such as credit rating, fraud detection, database marketing, customer relationship management, and stock market investments.

Measurement System Analysis - It is well-known that many problems in business, industry and government arise from using data that has unknown and variable precision or accuracy. It is not unusual to have the measurement system the focus of a process improvement project. In Six Sigma process improvement methodology, DMAIC, the "M" stands for "Measure". Every improvement activity must do a thorough analysis of measurement variation (MSA). The MSDSA program is unique in that an entire course (STAT 7140) is devoted to assessing and improving the measurement system. Students will learn how to perform measurement system studies which can lead to process improvements. Data is the focus of most decision making, collecting data requires measurement. How accurate/variable is your data?

Modeling Data - Statistical models are used in business and economics and in the social, health, behavioral, biological, physical and engineering sciences. The basic goal of statistical modeling is to use the information contained in data to develop a mathematical model describing relationships among the variables being measured. Statistical modeling extends the concept of mathematical modeling by taking into account the stochastic (random) nature of the relationships among the variables. The models that are developed are often used to predict the future behavior of a system, to screen out variables that are relatively unimportant to the system, to understand better the behavior of the system or to support or refute a theory about the behavior of the system.

Performance Improvement Measures - How does an organization improve performance? There is no prescription, but there are accepted practices to achieve Performance Excellence. These practices include DMAIC from Six Sigma that integrates the use of statistical tools into the performance improvement process. Criteria for attaining excellence are given by the Malcolm Baldrige National Quality Award or the Georgia Oglethorpe Award. These criteria will be discussed in light of their relevance to the use of statistical methods. For all methods, data play a central role. Decisions must be based on data. Use of statistical methods to collect, analyze and communicate information on opportunities for improvement will be discussed as part of MSDSA. Project managers, management and support personnel will benefit by understanding how to use statistical methods in the context of organizational improvement. Students will learn that every organizational activity can be considered a process. A process flow diagram with inputs, value added activity and outputs is the start for improving a process. Students will have the opportunity to work on a project that could address improvement of a process within their organization.

Quality Control - Statistical quality control is an indispensable tool in monitoring and improving the manufacturing process in facilities worldwide. Step by step, from identifying and constructing all the pieces of a control flow-chart, through creating and interpreting an appropriate control chart for a process, to designing experiments for process characterization and optimization, and finally, implementing quality management techniques, such as the six-sigma approach, this course will prepare students for professional practice with comprehensive coverage of current statistical methods for quality control and improvement.

Six Sigma - Every organization seeks to reduce their costs by improving operating processes. This is the focus of all Six Sigma projects. Performing a search on shows the wide variety of organizations that utilize Six Sigma methodology. These methods are organized in a process, DMAIC, which has become a universal improvement methodology. Learning this methodology enhances a career and can open new career opportunities. The MSDSA program trains students in Six Sigma methods in all courses since the basis of Six Sigma is the use of statistical methods. A complete course (STAT 7140) is required in the program to ensure students can put all the tools together to perform effective problem solving. Certification as a Six Sigma Black Belt is not required, but optional in the second year. Students interested in certification will need to have one project certified as effective cost savings project (with 3 years qualifying experience) and two projects otherwise. At the end of the first year, students will be prepared to take the Six Sigma Green Belt certification exam. This option can enhance career opportunities.

Statistical Computing - At KSU, we have incorporated the four most widely used statistical computing packages into our Statistics courses – EXCEL, SPSS, Minitab and SAS. While each of these packages can be used for basic data analysis, they each have specializations. Any individual who can represent themselves as knowledgeable and proficient in any or all of these packages will possess a marketable and differentiating skillset. EXCEL is used anywhere that data is available – which is everywhere. EXCEL is found in offices, libraries, schools, universities, home offices and everywhere in between. In addition to its role as a data analysis package, EXCEL is often used as a starting point to capture and organize data and then import it into more sophisticated analysis packages such as SPSS, Minitab or SAS. And, after analysis is complete, datasets can be exported back to EXCEL and shared with others who may not have access to (or have the ability to use) other analysis packages (we gently refer to this group as the "great statistical unwashed").Microsoft's EXCEL spreadsheet software package is almost ubiquitous. It represents a very basic and efficient way to organize, analyze and present data. Employers today expect that at a minimum new hires with college degrees will have a working knowledge of EXCEL.

Statistical Methods - The MSDSA Program at KSU will equip its graduates with foundational and readily applicable knowledge on all statistical methods most commonly used in business, industry and research. The Mathematical Statistics course (STAT 7010) will introduce the underlying theory (coupled with real-world applications) for the discipline of statistical inference. In these courses, students will learn how to make sound inferences about populations from sample data and why these methods work.

Throughout the program, the statistical software packages introduced in the first semester Statistical Computing course (STAT 7020) will be utilized by students to perform the methods they are learning and to help them analyze the results. In later semesters, students engage in courses specifically geared to provide skills and understanding of statistical methods for multivariate data (STAT 8320) and categorical data (STAT 7310). Similarly, there is a course in Applied Regression Analysis (STAT 7210), the most important methodology in statistical modeling.

Additionally, the student's ongoing work each semester on applied projects in the project course (STAT 7940) will result in further experience in real-world applications of methods mastered in the courses.

Frequently Asked Questions (FAQ)

Here are the most commonly asked questions regarding the Master of Science in Data Science and Analytics (MSDSA) program at KSU.

Why does MSDSA Admission require Calculus? The depth of understanding of statistics depends on a basic knowledge of calculus. The focus of this program is to develop graduates that have in-depth knowledge of the techniques they will be using. "Plugging into" formulas or computer a routine is not the objective. This approach will enable students to develop meaningful careers and be in demand in the marketplace.

May I take the calculus sequence after applying to the MS program?   Yes.  Proof of mathematics through Calculus II will be required for the completion of the MSAS program.  However, this proof is not required to apply.  In the past, we have offered conditional acceptances into the program which allows one to get started completing the calculus sequence beginning in the summer term and while taking some courses in the program. This is especially useful if one is looking to change careers to data science from a degree program that did not require calculus.   It is strongly recommended that one completes Calculus II prior to the start of their second year.

Is the GRE required for application? No. A complete submission will include the online application, a current resume, all college transcripts, and all international requirements, if applicable. Optional application materials may include, but are not limited to, a recent GRE score report (but not a subject test), a statement of purpose or at least two letters of recommendation. Statements of interest and recommendation letters provide an opportunity for us to get to know you better through your application.  Each component of the application provides critical information about you as a potential student in the program.

Can I start in the spring, rather than the fall? Yes, this program accepts new students in the spring and fall.

Can I substitute any graduate course from other departments? Yes, you can substitute up to 9 credit hours from other graduate programs with permission from the program coordinator.

Does Kennesaw offer any courses to help me prepare prior to applying to MSDSA? Yes. MATH 1190 (Calculus I), MATH 2202 (Calculus II) and MATH 3260 (Linear Algebra) are offered every semester. These would prepare students for the calculus part of the program. Courses in the Minor in Data Science and Analytics (STAT 3010, STAT 3120, STAT 3130, STAT 4120 and STAT 4210) would help students prepare for the statistics part of the program. These are not requirements for admission to the program.

What can I do with my degree? The entry degree for most positions requiring statistical training is the Master of Science degree. A recent Bureau of Labor Statistics report indicated that 18% of the country's statisticians work for the federal government, 16% for state and local governments and the remainder for private industry. University-based statisticians are a relatively small percentage. Thus, a large percentage of Data Science and Analytics graduate students will likely be placed in the private sector.

My undergraduate degree is not in math or statistics; can I still enroll in MSDSA? Yes. We have introductory pathways into the MSDSA program for career changers.

Is there any financial support for students? Yes. We do offer GTA/GRA positions. Calls for GTA applications go out to accepted students at regular intervals in the year as we prepare for each new term. GRA calls go out sporadically as the opportunities arise. Varying levels of support and tuition waivers are available depending on the number of hours one works. Graduate Assistantship Tiers - Graduate College Assistantships. In addition, financial aid and loans are available.

How much does it cost to enroll in this program? For current tuition costs, visit KSU's Graduate Tuition and Fees page.

I'm not interested in Six Sigma certification. Do I need to take the tests? No. There is no requirement to take any American Society for Quality certification test. At the end of the first year, students will be ready to take the Green Belt exam and can do so if they choose. At the end of the program, students will have covered the Body of Knowledge for the Black Belt exam. MSDSA is unique in that the Body of Knowledge is addressed for both exams within the MSDSA courses.

Will Kennesaw State University (KSU) accept my degree from a university outside of the United States? Graduates of universities outside the United States must be able to document that their degree is the equivalent of a four-year bachelor's degree awarded by an accredited United States college or university. For more information, visit KSU's Graduate College - Admissions for International Students webpage

What makes this program different from other programs? You will leave this program with skills that you can immediately use in the workplace or to go out and get a job. Our eleven Ph.D. statisticians have knowledge and experience in a wide range of applied settings.